3(x^2-9)+8=2

Simple and best practice solution for 3(x^2-9)+8=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(x^2-9)+8=2 equation:



3(x^2-9)+8=2
We move all terms to the left:
3(x^2-9)+8-(2)=0
We add all the numbers together, and all the variables
3(x^2-9)+6=0
We multiply parentheses
3x^2-27+6=0
We add all the numbers together, and all the variables
3x^2-21=0
a = 3; b = 0; c = -21;
Δ = b2-4ac
Δ = 02-4·3·(-21)
Δ = 252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{252}=\sqrt{36*7}=\sqrt{36}*\sqrt{7}=6\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{7}}{2*3}=\frac{0-6\sqrt{7}}{6} =-\frac{6\sqrt{7}}{6} =-\sqrt{7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{7}}{2*3}=\frac{0+6\sqrt{7}}{6} =\frac{6\sqrt{7}}{6} =\sqrt{7} $

See similar equations:

| 4.17x+7.62=2.9x | | 4+2s-3=9s+25-4s | | 9z+11=8z+3 | | 9m-13m-4=24 | | 12=10n-2 | | 4x+7=3- | | 12=10n-2|4 | | 2w-10+2w-10+w+w=52 | | 12x+7=4x+7 | | x+58+55=180 | | 3x-106=44+8x | | 6x=5x+40 | | x*12.5=4 | | 7x-71=29+3x | | -72=4(2+4x) | | 43,425-125x+200x=45000-200x | | X+30y=35.50.X+70y=49.50 | | 7x+9=9x-19=180 | | X+30y=35.50 | | 8x-12=6x+8=180 | | 6p^2+9=4p | | 7x+3=3x+15=180 | | a+39=27 | | 2x-x+x*3=3x+4x^2/5 | | -7=-7+a | | -12=-5+c | | -y+4.4y=8.1 | | 111+(r-1)=272 | | Z-zz=1 | | 4.3z-z=6.7 | | 3x+5-4x-9=0 | | Z-z=1 |

Equations solver categories